Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecology ; 104(7): e4106, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37259174

RESUMEN

Historical horticultural plant sales influence native and nonnative species assemblages in contemporary ecosystems. Over half of nonnative, invasive plants naturalized in the United States were introduced as ornamentals, and the spatial and temporal patterns of early introduction undoubtedly influence current invasion ecology. While thousands of digitized nursery catalogs documenting these introductions are publicly available, they have not been standardized in a single database. To fill this gap, we obtained the names of all plant taxa (species, subspecies, and varieties) present in the Biodiversity Heritage Library's (BHL) Seed and Nursery Catalog Collection. We then searched the BHL database for these names and downloaded all available records. We combined BHL records with data from an encyclopedia of heirloom ornamental plants to create a single database of historical nursery sales in the US. Each record represents an individual taxon offered for sale at an individual time in a specific nursery's catalog. We standardized records to the current World Flora Online (http://worldfloraonline.org) accepted taxonomy and appended accepted USDA code, growth habit, and introduction status. We also appended whether taxa were reported as invasive in the Global Plant Invaders (GPI) data set or the Global Invasive Species Database (GISD) or regulated in the conterminous US. Lastly, we geocoded all reported publication locations. The data set contains 2,445,875 records from nurseries in at least 2795 unique locations, with the majority of catalogs published between 1890 and 1950. Nurseries were located in all conterminous states but were concentrated in the eastern US and California. We identified 19,140 unique horticultural taxa, of which 8642 matched taxa in the USDA Plants database. The USDA Plants database is limited to native and naturalized taxa in the US. Native or introduced status was listed in USDA Plants for 7018 of included taxa, while 1642 had an unknown status. The remaining 10,498 taxa are not naturalized according to USDA Plants or are of varieties of native and introduced taxa that did not match USDA Plants taxonomy. The majority of taxa in the Historical Plant Sales (HPS) database with an identified status are native (65.5%; 4596 of 7018 taxa), of which 393 taxa are reported as invasive outside of the US. Of the 2381 introduced taxa, 1103 (46.3%) are reported as invasive somewhere globally. Despite a richer pool of native taxa, most cataloged plant records with an identified status were of introduced taxa (54.1%; 1,045,684 of 1,933,925 records). Plants reported as invasive somewhere globally comprised a large portion of records with an identified status (38.7%; 747,953 of 1,933,925 records) underscoring the large role of ornamental introductions in facilitating plant invasions. The HPS database provides a consolidated and standardized perspective on the history of native, introduced, and invasive plant sales in the US. We release these data into the public domain under a Creative Commons Zero license waiver (https://creativecommons.org/share-your-work/publicdomain/cc0/). Individuals who use these data for publication may cite the associated data paper.


Asunto(s)
Comercio , Plantas , Humanos , Biodiversidad , Ecología , Ecosistema , Especies Introducidas , Estados Unidos
2.
Ecol Appl ; 33(4): e2821, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36806368

RESUMEN

Invasive species science has focused heavily on the invasive agent. However, management to protect native species also requires a proactive approach focused on resident communities and the features affecting their vulnerability to invasion impacts. Vulnerability is likely the result of factors acting across spatial scales, from local to regional, and it is the combined effects of these factors that will determine the magnitude of vulnerability. Here, we introduce an analytical framework that quantifies the scale-dependent impact of biological invasions on native richness from the shape of the native species-area relationship (SAR). We leveraged newly available, biogeographically extensive vegetation data from the U.S. National Ecological Observatory Network to assess plant community vulnerability to invasion impact as a function of factors acting across scales. We analyzed more than 1000 SARs widely distributed across the USA along environmental gradients and under different levels of non-native plant cover. Decreases in native richness were consistently associated with non-native species cover, but native richness was compromised only at relatively high levels of non-native cover. After accounting for variation in baseline ecosystem diversity, net primary productivity, and human modification, ecoregions that were colder and wetter were most vulnerable to losses of native plant species at the local level, while warmer and wetter areas were most susceptible at the landscape level. We also document how the combined effects of cross-scale factors result in a heterogeneous spatial pattern of vulnerability. This pattern could not be predicted by analyses at any single scale, underscoring the importance of accounting for factors acting across scales. Simultaneously assessing differences in vulnerability between distinct plant communities at local, landscape, and regional scales provided outputs that can be used to inform policy and management aimed at reducing vulnerability to the impact of plant invasions.


Asunto(s)
Biodiversidad , Ecosistema , Humanos , Especies Introducidas , Plantas , Geografía
3.
Ecology ; 104(3): e3947, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36494323

RESUMEN

The movement of plant species across the globe exposes native communities to new species introductions. While introductions are pervasive, two aspects of variability underlie patterns and processes of biological invasions at macroecological scales. First, only a portion of introduced species become invaders capable of substantially impacting ecosystems. Second, species that do become invasive at one location may not be invasive in others; impacts depend on invader abundance and recipient species and conditions. Accounting for these phenomena is essential to accurately understand the patterns of plant invasion and explain the idiosyncratic results reflected in the literature on biological invasions. The lack of community-level richness and the abundance of data spanning broad scales and environmental conditions have until now hindered our understanding of invasions at a macroecological scale. To address this limitation, we leveraged quantitative surveys of plant communities in the USA and integrated and harmonized nine datasets into the Standardized Plant Community with Introduced Status (SPCIS) database. The database contains 14,056 unique taxa identified within 83,391 sampling units, of which 52.6% have at least one introduced species. The SPCIS database includes comparable information on plant species occurrence, abundance, and native status across the 50 U.S. States and Puerto Rico. SPCIS can be used to answer macro-scale questions about native plant communities and interactions with invasive plants. There are no copyright restrictions on the data, and we ask the users of this dataset to cite this paper, the respective paper(s) corresponding to the dataset sampling design (all references are provided in Data S1: Metadata S1: Class II-B-2), and the references described in Data S1: Metadata S1: Class III-B-4 as applicable to the dataset being utilized.


Asunto(s)
Ecosistema , Plantas , Especies Introducidas , Puerto Rico , Biodiversidad
4.
Ecology ; 103(12): e3837, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36178041

RESUMEN

Root hemiparasitic plants both compete with and extract resources from host plants. By reducing the abundance of dominant plants and releasing subordinates from competitive exclusion, they can have an outsized impact on plant communities. Most research on the ecological role of hemiparasites is manipulative and focuses on a small number of hemiparasitic taxa. Here, we ask whether patterns in natural plant communities match the expectation that hemiparasites affect the structure of plant communities. Our data were collected on 129 national park units spanning the continental United States. The most common hemiparasite genera were Pedicularis, Castilleja, Krameria, and Comandra. We used null models and linear mixed models to determine whether hemiparasites were associated with changes in community richness and evenness. Hemiparasite presence did not affect community metrics. Hemiparasite abundance was positively associated with increasing evenness of herbaceous species, but not with species richness. The associations that we observed on a continental scale are consistent with evidence that the impacts of root hemiparasitic plants on evenness can be substantial and abundance dependent but that effects on richness are less pronounced. Hemiparasites mediate competitive exclusion in communities to facilitate species coexistence and merit consideration of inclusion in ecological theories of coexistence.


Asunto(s)
Orobanchaceae , Pedicularis , Raíces de Plantas , Interacciones Huésped-Parásitos , Plantas
5.
Proc Natl Acad Sci U S A ; 119(22): e2117389119, 2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35622892

RESUMEN

Human-induced abiotic global environmental changes (GECs) and the spread of nonnative invasive species are rapidly altering ecosystems. Understanding the relative and interactive effects of invasion and GECs is critical for informing ecosystem adaptation and management, but this information has not been synthesized. We conducted a meta-analysis to investigate effects of invasions, GECs, and their combined influences on native ecosystems. We found 458 cases from 95 published studies that reported individual and combined effects of invasions and a GEC stressor, which was most commonly warming, drought, or nitrogen addition. We calculated standardized effect sizes (Hedges' d) for individual and combined treatments and classified interactions as additive (sum of individual treatment effects), antagonistic (smaller than expected), or synergistic (outside the expected range). The ecological effects of GECs varied, with detrimental effects more likely with drought than the other GECs. Invasions were more strongly detrimental, on average, than GECs. Invasion and GEC interactions were mostly antagonistic, but synergistic interactions occurred in >25% of cases and mostly led to more detrimental outcomes for ecosystems. While interactive effects were most often smaller than expected from individual invasion and GEC effects, synergisms were not rare and occurred across ecological responses from the individual to the ecosystem scale. Overall, interactions between invasions and GECs were typically no worse than the effects of invasions alone, highlighting the importance of managing invasions locally as a crucial step toward reducing harm from multiple global changes.


Asunto(s)
Efectos Antropogénicos , Ecosistema , Especies Introducidas , Cambio Climático , Humanos , Temperatura
6.
Ecol Lett ; 24(8): 1735-1737, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34142422

RESUMEN

When analyzing biotic resistance/diversity-invasibility, including predictors of species richness may result in a false negative correlation between native and non-native richness. However, reanalysis of vegetation surveys shows that the negative effect of native richness is statistically significant whether or not predictors of species richness are included.


Asunto(s)
Biodiversidad , Especies Introducidas , Ecosistema
7.
Ecol Lett ; 23(3): 476-482, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31875651

RESUMEN

The biotic resistance hypothesis predicts that diverse native communities are more resistant to invasion. However, past studies vary in their support for this hypothesis due to an apparent contradiction between experimental studies, which support biotic resistance, and observational studies, which find that native and non-native species richness are positively related at broad scales (small-scale studies are more variable). Here, we present a novel analysis of the biotic resistance hypothesis using 24 456 observations of plant richness spanning four community types and seven ecoregions of the United States. Non-native plant occurrence was negatively related to native plant richness across all community types and ecoregions, although the strength of biotic resistance varied across different ecological, anthropogenic and climatic contexts. Our results strongly support the biotic resistance hypothesis, thus reconciling differences between experimental and observational studies and providing evidence for the shared benefits between invasive species management and native biodiversity conservation.


Asunto(s)
Biodiversidad , Ecosistema , Ecología , Especies Introducidas , Plantas , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...